b5: A Web-Based Visual Programming Language

PEILING JIANG, New York University, USA

® bs

B @
bg #9b9b9b . @ Welcome to bs!

el EEES Siee This is the physical engine
example based on matter js.
canvas .
e @| “
- B .
o .

o

canvas

stroke #fffff

QA engine

Fig. 1. The interface of b5 web editor, version 0.2.2.

How will the next generation learn creative coding? Do they have to look up hundreds of pages of documen-
tation and take classes? Do they have to write redundant code for features already well accomplished due
to lack of information? Do they have to learn English? b5 rethinks the future of creative coding in terms
of clarity, accessibility, and customizability in a world that increasingly emphasizes remote collaboration,
internationalization, and personalized learning. b5 is a web-based visual programming language for learning
and fast prototyping for people with minimal to no programming experience, leveraging novel features
compared to other visual programming languages, including (1) position-based sequential execution (blocks
are executed in order based on their positions in the code canvas), (2) customized blocks (users can use the
predefined blocks and the graphical interface to design and construct new blocks), and (3) effect blocks (block
that affects other code blocks based on their contextual relationship instead of wire connection). b5 makes
programming easy to learn and encourages programmers to explore and try, while more analysis is needed to
assess its usability and long-term effects when used as the learning platform for beginners.

CCS Concepts: » Human-centered computing — User interface toolkits.

Additional Key Words and Phrases: visual programming language, creative computing

Capstone ’21, May 14, 2021, New York, NY Peiling Jiang

1 INTRODUCTION

Creative programming, using computational thinking to create expressive art and design projects
instead of functional computer programs [6], is becoming a heated topic across the fields. Its history
can be traced back to the 1960s [18], while the recent development of personal computers and web
technology and the growing body of open-source software, learning resources, and community
make it even more appealing, powerful, and accessible. Transforming from an avant-garde artistic
tradition to a common practice in the era of “ubiquitous computing,” its purpose, practitioners, and
deliverables have changed - the goal is no longer only serving as a medium for artistic exploration
and might be educational or auxiliary; the creators come from both fields of art and technology,
who worked as designers, programmers, artists, etc., and may also be students in various levels of
learning programs; the final display form can be graphics, installations (physical computing), films,
projections, sound art, etc. Many programming languages, scripting tools, and visual programming
interfaces emerge to meet the diverse needs of different groups of people.

Visual programming languages and interfaces gain their popularity among educators, designers,
and beginners through this process. Benefited from the development of computer processing power
and graphics capabilities, such tools become more accessible, powerful, and user-friendly than
before [3, 4]. Using icons, images, pictures as a metaphor of functions and variables, which are
common concepts in traditional text-based programming, people code by clicking, dragging, and
dropping in a canvas of these graphical representations, instead of typing characters and words in
the text editor.

Here, we propose b5, a web-based visual programming language that is designed to address
several ignored problems and needs in the field, as well as proposing new features either as an
extension or alternative solutions compared to the existing tools.

2 RELATED WORK

[Ingalls et al.] proposed Fabrik, a visual programming language leveraging “wires” and “nodes”
as the basic components to create interactive projects. However, limited by the human-computer
interaction devices and graphics power back then, the interface looks primitive and barely usable.
The Scratch language and its programming environment were proposed by [Maloney et al.] and
soon become one of the most popular tools for teaching and practicing programming in schools
of different levels ranging from kindergarten to pre-college. The use of it in teaching shows
positive results - students who learned Scratch could then spend less time to learn new topics, have
fewer difficulties, and obtain higher levels of understanding when learning more advanced text-
based programming languages like Python and C [2], indicating positive cognitive-level assistance
being provided by the interface so that students can better learn and comprehend concepts in
programming in general. [Ruf et al.] also showed that learning Scratch helped students to perform
better in later coding challenges with a higher intrinsic motivation to learn novel concepts. The
visual programming languages not only outperform traditional programming languages in terms of
educational purposes but also accessibility (learning curve and hardness of understanding) and can
be specifically designed to better serve in particular domains and aid people with minimal or no
coding experience to leverage for computational tasks. For example, Grasshopper [15], a plugin for
Rhinoceros 3D, were designed to help complete computational industrial and architecture design.
The target users of it are designers and architects who are supposed to have no programming
experience at all. Another example is Max [1] designed for composer, performers, and artists to
create music and multimedia projects. [McNerney], on the other hand, pushed the boundary of
visual programming further into the physical world where people can use real LEGO bricks as
building blocks to design their programs.

b5: A Web-Based Visual Programming Language Capstone 21, May 14, 2021, New York, NY

Because of different purposes, target users, and generalization capabilities compared to text-based
programming languages, various visual programming languages and the platforms to create and
edit them emerge in fields where there is a computation need, result in tons of different choices [7]
and outnumbers the text-based ones.

3 DESIGN

Visual programming languages can be divided into two subcategories: node-based, e.g., Grasshopper
[15], where nodes are separated and connected by wires in-between, and the execution order of
the nodes is solely based on the connection between them, from root to edge; and block-based,
e.g., Scratch [14], where blocks of lines of code are placed together sequentially, and the execution
order of the blocks is thus determined by the contextual position of the block. The latter is more
closely related to the traditional text-based languages with a strong emphasis on sequence.

b5, however, tries to take advantage of both designs - using a node-based layout, while still
emphasizing the execution order by constraining the position of the “nodes” (or in the context of
b5, blocks) into the code canvas with a grid layout. The blocks then run sequentially from left to
right, in each line of the canvas, and line by line from top to bottom. In the context of b5, we call
each individual code block a "block," and its ports that send outputs or receive inputs "nodes."

50
< Functionality
<& e Connection
S @ Input/Output

Fig. 2. The basic structure of a b5 program. b5 uses a node-based design where each code block is separate
and connected by the wires in-between for the data to flow from the upper blocks to the lower ones. However,
unlike other node-based interfaces, b5 uses a grid layout to constrain the position of the blocks in the code
canvas (the canvas where all the code blocks are placed) for users to define the only possible execution order
of all code blocks. In this figure, the circle block is taking outputs from the x node of canvas center block
into its x node and from the output of number slider block into its y node. However, with the sequential
execution design (from left to right, from top to bottom), the order that the blocks in this code canvas run is
canvas center, number slider, no stroke, fill, and circle, even though the style blocks do not have direct wire
connections with the circle block.

Since all the blocks are sequence-sensitive and always aware of their positions in relates to the
others, a novel characteristic is introduced for the effect blocks. Effect blocks can affect other blocks
around based on their position relationships, e.g., all the following blocks in the code canvas or
all the other blocks in the same line, instead of the wire connections. This feature is inspired by
HTML canvas rendering context whose style settings can affect the following shapes drawn on

Capstone ’21, May 14, 2021, New York, NY Peiling Jiang

the canvas. In figure 2, the fill block is an effect block that sets the filling color for the following
shapes cascadingly, till another fill block is encountered. When an effect block is selected and
focused, the background grid cells will also change color to reflect its effective range, unlike when
working with text-based canvas rendering context mentioned above, the underlying status of the
drawing context always remains hidden to the programmer and needs to be inferred from the
actual behavior of the program. This extra layer of information is supposed to help programmers
gain a deeper understanding of their programs and debug or reconstruct them more easily.

We created a web-based programming interface to help users create, edit, and read b5 code
files. As shown in figure 3, the whole system consists of two major components: a floating viewer
window and an editor interface. The viewer window shows the live rendering of the program and
can help snapshot or record the canvas for sharing. The editor, the programming interface, can be
further divided into Factory and Playground sections. Users can construct their customized variable,
function, and object blocks (See section 3.3.) in the panels of the Factory section, which can be later
used in the code canvas in Playground. Playground has only one mega code canvas that behaves
similarly to the draw loop of p5.js [8] and runs 60 times per second by default.

Editor Editor
ode

Viewer \\\\\

Fig. 3. The web-based programming interface of b5. The environment has a floating viewer window and an
editor interface, which consists of two sections, Factory and Playground.

The following subsections will elaborate how other design choices were made to enhance b5’s
clarity, accessibility (e.g., understandability), and customizability.

3.1 Clarity

Besides the sequence-sensitive design in b5 that forces people to learn and think more about flow,
which would benefit them when programming in more advanced languages, several other features
make the interface of b5 clear and easily comprehensible.

Like many other visual programming languages, b5 is colorful, and each of the block types has its
color. The color is consistent across the system to the connecting nodes and other buttons to further
strengthen users’ muscle memory and could help increase their ability to recognize the overall
structure of the program. Just as shown in figure 4, draw blocks, e.g., and canvas, are pink, default
function blocks, e.g., constrain and map, are gray, etc. Besides different block types, different blocks
also have different designs, i.e. forms and structures, to best serve their particular functionalities -
some may only take inputs and outputs, some have a slider or input box component to interact
with, and some organize all the information into one line for simplicity.

b5: A Web-Based Visual Programming Language Capstone 21, May 14, 2021, New York, NY

b0 b1 step a b i step
® Welcome! YW UW¥ Q q
canvas my function canvas s engine
value value

Fig. 4. Different colors of different block types.

The blocks’ wires and input/output nodes are also designed to precisely indicate their position,
identity, and connecting status. The nodes are white by default and can switch to different colors
(See figure 5.) when connecting to other blocks as the input or output hooks, indicating the data
flowing through them. It may also turn alarming red, along with the connecting wire, when there
is an error related to the current connection, e.g., the input node expects a number input while a
shape is fed.

Fig. 5. Positions, identities, and connecting status of the nodes in a code block.

Instead of waiting for compilation and the code changes reflected on the canvas, b5 enables
users to modify scripts on the fly and any changes made, additions, deletions, or parameter tweaks,
will be instantly visible on the side of the code. Thanks to this live rendering feature, users are
encouraged to make changes and explore different possibilities of the code and, as a result, gain a
deeper understanding of the structure and functionalities of each code block through the effortless
tries. Like some other visual programming languages that also features live rendering, b5 could
encourage learning code by exploration and help form certain programming habits - that they are
no longer afraid of trying and tweaking the code - which would benefit the learners later when
they learn more advanced and harder topics [17].

To conclude, features including sequential specific, colorful blocks, status-sensitive nodes and
wires, and live rendering help make b5 and its web-based programming environment clear and
reduce ambiguity that might confuse new users when they first see and use the system with minimal
guidance and teaching.

3.2 Accessibility

Another major design concern is accessibility in terms of the learning curve and the hardness of
understanding, especially for people with limited educational resources.

All the code documentation (what a particular predefined function does and how to use it) is
directly embedded in its component, whether it’s a block, a node, or some other interactive code
components, e.g., an input box or a slider. One can intuitively look it up by hovering the mouse
on the corresponding component, instead of opening another browser window and search for the
component. The documentation popup includes all the information one would need to understand
the functionality and use cases of a block, including the full name that better depicts the identity, a
detailed description explaining its function and default values (for nodes), and the type (e.g., block
or node) and category (e.g., draw or object block) of this component.

Capstone ’21, May 14, 2021, New York, NY Peiling Jiang

| The current value of the
| slider

PRFSIOIN) Set the fil color for the 0 100 _n

following shapes

= m
w h num
W

height | Height of canvas

Fig. 6. Embedded documentation for the blocks, nodes, and other components. When hovering on a code
block, the full name, description, and categorization will show. The feature also applies to other components
in the code canvas, including the nodes, the input boxes, and more.

Since the text is just labels instead of the commands themselves, the blocks, node names, and
even embedded documentation can be easily translated into another language to increase the
accessibility of the system. Scratch has been translated into more than 70 different languages [5],
and b5 is expected to have the same flexibility for better internationalization compared to text-based
languages. People from over the world would then be able to learn computation without learning
an additional language as a prerequisite.

' O ' ' ' ' O ' O ' O O e
e
O O

Fig. 7. The same camera block translated into English, Chinese, French, and Japanese. Both the block name
and node names are translated.

Finally, b5 editor, the whole programming environment, is web-based and can be loaded and
ready to work swiftly, and the only requirement is a stable internet connection. The whole process
of creating, editing, and reading b5 programs does not require any additional installation. There is
also no hardware or software requirement - one can even easily use it on a tablet or mobile device.
The b5 definition file used to store the type, location, and connection of the blocks is in JSON
(JavaScript Object Notation) format and can be opened and read by almost all modern operating
systems and web browsers. No private-domain extensions are associated with the files. Thanks to
the nature of b5 and its coding platform, the system is highly accessible and straightforward to
work with.

The easily accessible embedded code documentation, the ability to be multilingual, and the
web-based nature all help make b5 and its programming interface highly accessible and easy to
work with, even without a trained teacher for this novel system, without learning English, and
without any software purchase or installation.

b5: A Web-Based Visual Programming Language Capstone 21, May 14, 2021, New York, NY

3.3 Customizability

value

Fig. 8. The interface for designing and constructing customized blocks. A code canvas and the rendering of
the customized block.

In b5, instead of only using the predefined blocks, programmers can easily build their own cus-
tomized blocks, including variables, functions, and objects, within the Factory panel, just like using
the default commands and functions to write a new function or define a new object in a text-based
language. A live preview of the customized block is placed side by side with the mini code canvas
where users can add code blocks as they did in the main code canvas in Playground.

The Factory panel has three tabs in which users can construct three types of customized blocks:
variable, function, and object. The object type has not been implemented and the many details are
yet to be finalized. The variable blocks do not take any inputs (all the input nodes from the blocks
used for construction will be eliminated) and their output values are calculated once during their
definition before the first call to the Playground canvas and are fixed even when the blocks are
used for multiple times in the Playground canvas - just like a variable. The whole variable tab can
be regarded as the setup function in p5.js [8], except that it also produces instances that can be
directly referred to in the draw loop (the Playground code canvas).

The function tab, however, works like defining functions. The customized blocks will not be
called or calculated unless they are placed in the code canvas in Playground and are able to take
inputs to calculate for different output values for each time different input values are fed in - just
like a function.

To avoid circular definition (the definition of a customized block has itself in its defining canvas),
the customized blocks can only be used in the mega code canvas in Playground.

4 WORKSHOP

To test the usability of the system, we set up a workshop with three participants (2 males, 1 female,
all college students, 2 majoring in design, and 1 majoring in psychology, labeled as P1 to P3) who
had no programming experience at all and did not know anything about b5 before. The workshop
was conducted in Chinese and used the English version of the interface.

To get the participants to use the interface and program in b5, a follow-along tutorial to build a
bouncing ball sketch (a circle bouncing around the canvas) was given. A few qualitative questions
were asked and discussed after the tutorial, including:

(1) How do you like b5? Are you interested in continuing learning it to build more complex

programs in the future?

(2) Do you find the interface confusing? Is so, which parts confused you?

(3) Are you confident that you can build the example again by yourself from scratch without

any external help and hint?

Capstone ’21, May 14, 2021, New York, NY Peiling Jiang

(4) Do you understand the core concepts of this programming language and its interface, includ-
ing the Factory and Playground structure, the sequence, different block types, the nodes and
their connecting wires? How would you explain them to people with no experience in b5
and any other type of programming?

(5) Use one word to describe your thoughts on b5 and your experience.

We received a lot of positive feedback. Participants all agreed that b5 was easy to understand and
use, with little difficulty comprehending the basic ideas, including the structure and the sequential
design. P1 said that the interface made them believe that they can program, and coding was no
longer scary. Design students compared the interface to Adobe Photoshop and Illustrator and
agreed that the visual interface was more intuitive to learn and work with as all the options,
features, and functionalities were visually available for reference and use. P3 said that the system
was user-friendly and could be a good alternative for kids to learn programming or logical thinking
in general. Other endorsements were given to features including the translation (verbally described
to the participants) and embedded documentation. When asked to use one word to describe their
thoughts on b5 or the overall experience, participants, from P1 to P3, used fun, fast, and cute.

Several concerns and suggestions were also brought up by the participants in the workshop.

(1) The block names may be hard to memorize. Currently, there is no browsing system to view
all the blocks in a well organized and classified way, and the only way to find and add a new
block is to use a search bar to search for the name, type, or description of the block, which
does require a basic knowledge of the existing blocks.

(2) Factory is confusing. One participant was confused by the Factory and Playground structure
and could not understand their relationship, executing order, and differences and use cases
between the variable and function sections. Extra explanation was needed for them to fully
understand this concept.

(3) Sequence-sensitivity is not indicated by any means from the interface. One of the major
differences of b5 and other visual programming languages is the execution sequence being
determined solely based on the position instead of the connection of the blocks. However,
no visual cue is currently provided to inform the users of this design. Programmers need to
either be told or try to re-position several blocks to find it out, and possible confusion may
occur during this process.

All the feedbacks listed above are valid concerns regarding b5 and the current implementation of
the programming environment and need to be addressed in future iterations to provide a better
user experience. To better assess the acceptance rate, efficiency, learning curve, and long-term
benefit of using b5 as the primary learning tool for beginners, more qualitative and quantitative
analysis needs to be done.

5 LIMITATIONS AND FUTURE WORK

Several issues are to be addressed in the future. There is currently no block browsing system for users
to see all the blocks, organized and classified, limiting the exploration for new users who have little
knowledge of the available blocks. The novel Factory and Playground composition, as a graphical
metaphor of the definition - execution structure in traditional text-based programming languages,
however, needs a better design to inform the new users. The same as the importance of block
position in b5 and its relationship to the execution order compared to other visual programming
languages that more visual or audio cues need to be provided as a part of the interface. Is the
current design and implementation optimized and understandable to programming beginners? To
answer this question, we need more qualitative and quantitative analysis.
For the future works, two major pathways to extend the current work are:

b5: A Web-Based Visual Programming Language Capstone 21, May 14, 2021, New York, NY

(1) Sharing and collaboration. Sharing a well-wrapped block is much easier and visually more
intuitive than sharing lines of code. A feature that enables users to share their customized
blocks just like using Airdrop would greatly enhance current code sharing and collaboration
experience. Users may also be able to browse the blocks designed and programmed by others
in a marketplace and load then into their own projects easily.

(2) Modularization. b5 and its programming environment, the web editor, are initially de-
signed for creative coding projects, while can also be modularized and extended to help
non-programmers accomplish computational tasks in other domains, e.g., programming to
customize and control smart home devices. As the blocks, in the backstage, have an extremely
simple API for definition and execution, other developers and companies can use this system
to create their own blocks to serve others needs in their domain of interest.

Community is also vital to the success, and many issues related to building a lively and supportive
community are yet to be explored, e.g., on-boarding new developers and outlining contribution
guidelines and code of conduct. These are not directly related to the design and development of b5
itself, but would define the future of this new programming platform.

6 CONCLUSION

How will the next generation learn creative coding? Do they have to look up hundreds of pages of
documentation and take classes? Do they have to write redundant code for features already well
accomplished due to lack of information? Do they have to learn English? We designed and imple-
mented a novel visual programming language, b5, and its web-based programming environment to
address these questions. The name of b5 was inspired by p5.js [8] developed by Processing Founda-
tion and developers from the open-source world, which also inspired many other concepts from
creating a canvas to the Factory and Playground structure. b5 is a web-based visual programming
language for learning and fast prototyping for people with minimal to no programming experience,
leveraging many novel features compared to other visual programming languages and text-based
languages like Python: (1) b5 is sequence-sensitive. There is only one possible global execution
sequence for all the code blocks determined by their relative positions in the code canvas. The
positions of the blocks play an essential role, just like the order of the lines when programming
using text-based languages, and programmers are forced to think more about the sequence and
flow. (2) Instead of only using pre-defined blocks, users can also use those blocks to design and
construct their own customized blocks as new variables, functions, or objects and use them in the
Playground code canvas to increase the flexibility and efficiency of their programs. The ability to
define a function or wrap a group of commands into one that saves typing and computing is critical
to more advanced programmers, and through this design and structure, a similar set of skills are
supposed to get trained. (3) Due to the sequence-sensitive characteristic of b5, a new type of block,
effect block, that affects other blocks by relative positioning instead of wire connection, is defined.
The grid interface of the code canvas is also designed to help dynamically reflect the effective range
of those blocks. Effect blocks reveal the underlying information, e.g., the drawing context settings,
that usually remain hidden to the programmers, and help them understand the code better with
this extra layer of information. The first two features were inspired by text-based languages, while
the last one may help improve other visual and text-based languages to be more understandable
and less ambiguous.

In the workshop, our current implementation received positive feedback from participants with
no programming experience. All participants agreed that this novel programming language and its
editing interface are easy to use and understand.

Capstone ’21, May 14, 2021, New York, NY Peiling Jiang

b5 rethinks the future of creative coding by emphasizing clarity, accessibility, and customizabil-
ity in a programming system. With features including position-based sequential execution and
customized blocks, b5 helps non-programmers learn computational thinking and fast prototype
creative coding projects. While more analysis needs to be done to assess its usability and efficiency,
b5 has received various positive feedback on its major innovation and novel features. The pro-
gramming language and its web-based environment will keep evolving and iterating towards a
functional tool that can be used for serious and critical production works.

ACKNOWLEDGMENTS

This is the capstone research project in support of candidature for my B.F.A. degree in Interactive
Media Arts. This project is partially funded by NYU Tisch School of the Arts Undergraduate
Creative Research Fund. After five years of undergraduate studies, this project well represents
many of the fields that I have learned, practiced, and tried: industrial design, integrated innovation,
computational design, interactive media, computer science, and psychology. Many thanks to
everyone who has guided, helped, supported me, and shaped my academic path towards the one
that enables the accomplishment of this project: my parents, professors, friends, and classmates.
More specifically, I want to say thank you to Tao Jiang, Yongjun Zeng, Xingqiong Chen, Keru Wang,
Daniel Shiffman, Daniel Rozin, Brandon Clifford, Xiangyang Xin, Denis Pelli, Weiji Ma, David
Robert Wallace, Lin Zou, Enguo Cao, Eugenio Altieri, Yan Chen, Matt Romein, Katherine Dillon,
Allison Parrish, Youxin Wu, Shawn Van Every, Linghao Zhang, Mimi Yin, Randi Williams, Arnav
Kapur, Yiqing Liu, Wei Dai, Xintian Li, Zhongchao Tang, Xinyue Wang, Yuanda Xu, Yanan Wang,
Jin Dou, Glenn Fernandes, Cezar Mocan, Lydia Jessup, Ruixuan Li, and Jinshuo Huang.
Thank you!

REFERENCES

[1] Cycling ’74.2020. Max. cycling74.com/products/max/
[2] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From scratch to “real” programming. ACM
Transactions on Computing Education (TOCE) 14, 4 (2015), 1-15.
[3] Marat Boshernitsan and Michael Sean Downes. 2004. Visual programming languages: A survey. Computer Science
Division, University of California.
[4] Margaret M Burnett and David W McIntyre. 1995. Visual programming. COMPUTER-LOS ALAMITOS- 28 (1995),
14-14.
[5] Wikipedia contributors. 2007. Scratch (programming language). https://en.wikipedia.org/wiki/Scratch_(programming_
language)
[6] Wikipedia contributors. 2021. Creative coding. https://en.wikipedia.org/wiki/Creative_coding
[7] Wikipedia contributors. 2021. Visual programming language. https://en.wikipedia.org/wiki/Visual_programming_
language
[8] Processing Foundation. 2013. p5.js. https://p5js.org/
[9] Paul E Haeberli. 1988. ConMan: A visual programming language for interactive graphics. In Proceedings of the 15th
annual conference on Computer graphics and interactive techniques. 103-111.
[10] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph, and Ken Doyle. 1988. Fabrik: a visual programming
environment. ACM SIGPLAN Notices 23, 11 (1988), 176-190.
[11] Anastasia Kovalkov, Avi Segal, and Kobi Gal. 2020. Inferring Creativity in Visual Programming Environments. In
Proceedings of the Seventh ACM Conference on Learning@ Scale. 269-272.
[12] Paul Lyons, Giovanni Moretti, and Chrissy Reeves. 2001. Some possibilities of visual programming languages. In
Proceedings of the Symposium on Computer Human Interaction. 43—47.
[13] Matthew B MacLaurin. 2011. The design of Kodu: A tiny visual programming language for children on the Xbox 360.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 241-246.
[14] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE) 10, 4 (2010), 1-15.
[15] Robert McNeel and associates. 2007. Grasshopper. grasshopper3d.com

—

10

cycling74.com/products/max/
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Creative_coding
https://en.wikipedia.org/wiki/Visual_programming_language
https://en.wikipedia.org/wiki/Visual_programming_language
https://p5js.org/
grasshopper3d.com

b5: A Web-Based Visual Programming Language Capstone 21, May 14, 2021, New York, NY

[16] Timothy S McNerney. 1999. Tangible programming bricks: An approach to making programming accessible to everyone.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[17] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of programming in scratch. In Proceedings
of the 16th annual joint conference on Innovation and technology in computer science education. 168—172.

[18] Monoskop. 2012. Compos 68. https://monoskop.org/Compos_68

[19] Alexander Ruf, Andreas Miihling, and Peter Hubwieser. 2014. Scratch vs. Karel: impact on learning outcomes and
motivation. In Proceedings of the 9th workshop in primary and secondary computing education. 50-59.

A CODE AVAILABILITY

b5 is fully open-sourced.

The source code of the language and the web-based interface can be found at https://github.com/
peilingjiang/b5. The web editor is hosted at https://b5editor.app/ and is automatically built based
on the latest version of the code. Due to limited time, this version of the paper may contain typos
and errors and may be modified and updated in the future. Future updates and more information
about this project can be found at the links above and https://jpl.design/b5.

B EARLY SKETCHES

&
o
=S

bs

canvas
Q

500
'd] 10— 2000

canvas & P

createCanvas

ellipse

a 11 M 12 h2 n g

500
500
500
500

Fi

g. 9. The early sketch of the interface, including the structure, code canvas, blocks, and wire connections.

11

https://monoskop.org/Compos_68
https://github.com/peilingjiang/b5
https://github.com/peilingjiang/b5
https://b5editor.app/
https://jpl.design/b5

Capstone "21, May 14, 2021, New York, NY Peiling Jiang

search name, type, or description
createCanvas
createCanvas

pointsLine

Fig. 10. The early sketch of the block search interface.

12

b5

: A Web-Based Visual Programming Language

Capstone 21, May 14, 2021, New York, NY

default variable function object dran library
o o
a b
cnv :
libraryFunc
value
o O
g
2 o o o o
a n h1 12 h2
myFunction ellipse
v
0
5 a b
. b5Iterable
2 [500, 200, 617]
2 number 500
- 5
N 500
::) number

) 10 [2000

Fig. 11. The early block designs classified by the type and form.

13

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Clarity
	3.2 Accessibility
	3.3 Customizability

	4 Workshop
	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Code Availability
	B Early Sketches

